lib/ecc/src/ecdsa.js
import assert from "assert"; // from github.com/bitcoinjs/bitcoinjs-lib from github.com/cryptocoinjs/ecdsa
import {sha256, HmacSHA256} from "./hash";
import enforceType from "./enforce_types";
import BigInteger from "bigi";
import ECSignature from "./ecsignature";
const Buffer = require("safe-buffer").Buffer;
// https://tools.ietf.org/html/rfc6979#section-3.2
function deterministicGenerateK(curve, hash, d, checkSig, nonce) {
enforceType("Buffer", hash);
enforceType(BigInteger, d);
if (nonce) {
hash = sha256(Buffer.concat([hash, Buffer.alloc(nonce)]));
}
// sanity check
assert.equal(hash.length, 32, "Hash must be 256 bit");
var x = d.toBuffer(32);
var k = Buffer.alloc(32);
var v = Buffer.alloc(32);
// Step B
v.fill(1);
// Step C
k.fill(0);
// Step D
k = HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k);
// Step E
v = HmacSHA256(v, k);
// Step F
k = HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k);
// Step G
v = HmacSHA256(v, k);
// Step H1/H2a, ignored as tlen === qlen (256 bit)
// Step H2b
v = HmacSHA256(v, k);
var T = BigInteger.fromBuffer(v);
// Step H3, repeat until T is within the interval [1, n - 1]
while (T.signum() <= 0 || T.compareTo(curve.n) >= 0 || !checkSig(T)) {
k = HmacSHA256(Buffer.concat([v, new Buffer([0])]), k);
v = HmacSHA256(v, k);
// Step H1/H2a, again, ignored as tlen === qlen (256 bit)
// Step H2b again
v = HmacSHA256(v, k);
T = BigInteger.fromBuffer(v);
}
return T;
}
function sign(curve, hash, d, nonce) {
const e = BigInteger.fromBuffer(hash);
const n = curve.n;
const G = curve.G;
let r, s;
deterministicGenerateK(
curve,
hash,
d,
function(k) {
// find canonically valid signature
let Q = G.multiply(k);
if (curve.isInfinity(Q)) return false;
r = Q.affineX.mod(n);
if (r.signum() === 0) return false;
s = k
.modInverse(n)
.multiply(e.add(d.multiply(r)))
.mod(n);
if (s.signum() === 0) return false;
return true;
},
nonce
);
let N_OVER_TWO = n.shiftRight(1);
// enforce low S values, see bip62: 'low s values in signatures'
if (s.compareTo(N_OVER_TWO) > 0) {
s = n.subtract(s);
}
return new ECSignature(r, s);
}
function verifyRaw(curve, e, signature, Q) {
var n = curve.n;
var G = curve.G;
var r = signature.r;
var s = signature.s;
// 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]
if (r.signum() <= 0 || r.compareTo(n) >= 0) return false;
if (s.signum() <= 0 || s.compareTo(n) >= 0) return false;
// c = s^-1 mod n
var c = s.modInverse(n);
// 1.4.4 Compute u1 = es^−1 mod n
// u2 = rs^−1 mod n
var u1 = e.multiply(c).mod(n);
var u2 = r.multiply(c).mod(n);
// 1.4.5 Compute R = (xR, yR) = u1G + u2Q
var R = G.multiplyTwo(u1, Q, u2);
// 1.4.5 (cont.) Enforce R is not at infinity
if (curve.isInfinity(R)) return false;
// 1.4.6 Convert the field element R.x to an integer
var xR = R.affineX;
// 1.4.7 Set v = xR mod n
var v = xR.mod(n);
// 1.4.8 If v = r, output "valid", and if v != r, output "invalid"
return v.equals(r);
}
function verify(curve, hash, signature, Q) {
// 1.4.2 H = Hash(M), already done by the user
// 1.4.3 e = H
var e = BigInteger.fromBuffer(hash);
return verifyRaw(curve, e, signature, Q);
}
/**
* Recover a public key from a signature.
*
* See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
* Key Recovery Operation".
*
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*/
function recoverPubKey(curve, e, signature, i) {
assert.strictEqual(i & 3, i, "Recovery param is more than two bits");
var n = curve.n;
var G = curve.G;
var r = signature.r;
var s = signature.s;
assert(r.signum() > 0 && r.compareTo(n) < 0, "Invalid r value");
assert(s.signum() > 0 && s.compareTo(n) < 0, "Invalid s value");
// A set LSB signifies that the y-coordinate is odd
var isYOdd = i & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var isSecondKey = i >> 1;
// 1.1 Let x = r + jn
var x = isSecondKey ? r.add(n) : r;
var R = curve.pointFromX(isYOdd, x);
// 1.4 Check that nR is at infinity
var nR = R.multiply(n);
assert(curve.isInfinity(nR), "nR is not a valid curve point");
// Compute -e from e
var eNeg = e.negate().mod(n);
// 1.6.1 Compute Q = r^-1 (sR - eG)
// Q = r^-1 (sR + -eG)
var rInv = r.modInverse(n);
var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv);
curve.validate(Q);
return Q;
}
/**
* Calculate pubkey extraction parameter.
*
* When extracting a pubkey from a signature, we have to
* distinguish four different cases. Rather than putting this
* burden on the verifier, Bitcoin includes a 2-bit value with the
* signature.
*
* This function simply tries all four cases and returns the value
* that resulted in a successful pubkey recovery.
*/
function calcPubKeyRecoveryParam(curve, e, signature, Q) {
for (var i = 0; i < 4; i++) {
var Qprime = recoverPubKey(curve, e, signature, i);
// 1.6.2 Verify Q
if (Qprime.equals(Q)) {
return i;
}
}
throw new Error("Unable to find valid recovery factor");
}
export {
calcPubKeyRecoveryParam,
deterministicGenerateK,
recoverPubKey,
sign,
verify,
verifyRaw
};